Lysosome mediated Kir2.1 breakdown directly influences inward rectifier current density.
نویسندگان
چکیده
The inward rectifier current generated by Kir2.1 ion channel proteins is primarily responsible for the stable resting membrane potential in various excitable cell types, like neurons and myocytes. Tight regulation of Kir2.1 functioning prevents premature action potential formation and ensures optimal repolarization times. While Kir2.1 forward trafficking has been addressed in a number of studies, its degradation pathways are thus far unknown. Using three different lysosomal inhibitors, NH(4)Cl, chloroquine and leupeptin, we now demonstrate involvement of the lysosomal degradation pathway in Kir2.1 breakdown. Upon application of the inhibitors, increased steady state protein levels are detectable within few hours coinciding with intracellular granular Kir2.1 accumulation. Treatment for 24h with either chloroquine or leupeptin results in increased plasmamembrane originating inward rectifier current densities, while current-voltage characteristics remain unaltered. We conclude that the lysosomal degradation pathway contributes to Kir2.1 mediated inward rectifier current regulation.
منابع مشابه
Inward rectifier K(+) current in human bronchial smooth muscle cells: inhibition with antisense oligonucleotides targeted to Kir2.1 mRNA.
Inward rectifier K(+) (Kir) channels play an important role in forming membrane potential and then modulating muscle tone in certain types of smooth muscles. In cultured human bronchial smooth muscle cells (hBSMCs), Kir current was identified using whole-cell voltage clamp techniques and explored by using RT-PCR analysis of mRNA, Western blotting, and antisense oligonucleotide methods to block ...
متن کاملMicroRNA-26 governs profibrillatory inward-rectifier potassium current changes in atrial fibrillation.
Atrial fibrillation (AF) is a highly prevalent arrhythmia with pronounced morbidity and mortality. Inward-rectifier K+ current (IK1) is believed to be an important regulator of reentrant-spiral dynamics and a major component of AF-related electrical remodeling. MicroRNA-26 (miR-26) is predicted to target the gene encoding KIR2.1, KCNJ2. We found that miR-26 was downregulated in atrial samples f...
متن کاملDifferential distribution of Kir2.1 and Kir2.3 subunits in canine atrium and ventricle.
Ventricular inward rectifier K(+) current (I(K1)) is substantially larger than atrial, producing functionally important action potential differences. To evaluate possible molecular mechanisms, we recorded I(K1) with patch-clamp techniques and studied Kir2.1 and Kir2.3 subunit expression. I(K1) density was >10-fold larger in the canine ventricle than atrium. Kir2.1 protein expression (Western bl...
متن کاملRole of Kir2.1 in human monocyte‐derived foam cell maturation
The role of K(+) channels in macrophage immunomodulation has been well-established. However, it remains unclear whether K(+) channels are involved in the lipid uptake of macrophages. The expression and function of the inward rectifier potassium channel (Kir2.1, KCNJ2) in Human acute monocytic leukemia cell line (THP-1) cells and human monocytes derived macrophages (HMDMs) were investigated usin...
متن کاملRevisit of the Cardiac Inward Rectifier Potassium Current IK1
Inward rectifier potassium currents are present in different types of cells. In the heart, the inward rectifier potassium current IK1 plays a crucial role in maintaining cardiac resting membrane potential and excitability. It is generally believed that the strong inward rectification of cardiac IK1 channels makes it conduct substantial current near the resting potential but carry little or no c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biochemical and biophysical research communications
دوره 367 3 شماره
صفحات -
تاریخ انتشار 2008